LoRa

Wireless Network for the Internet of Things

Content

- 1) The Internet of Things
- 2) Low-Power Wide-Area Network (LPWAN)
- 3) LoRa
 - Architecture
 - Layers
 - Limitations
- 4) Other LPWAN Technologies
- 5) Conclusion

The Internet of Things

when your lightbulb has more processing power than your first phone

The Internet of Things

- Network of physical devices
 - Sensors
 - Vehicles
 - Various kinds of embedded systems

- Requirements depend on application
 - safety and critical infrastructure -> low latency and reliability (QoS)
 - surveillance cameras -> high bandwidth
 - battery powered devices -> low power consumption

Networking the IoT

Wireless Comparison Chart

RANGE CAPABILITY

Figure 1: Wireless Comparison Chart from [6]

Picking a Network

Compromise out of:

longDistance

Bandwidth

low

Power Consumption

Low-Power Wide-Area Network

sometimes we want to decrease the bandwidth

LPWAN - Motivation

- Motivation
 - Cellular is not suited
 - WiFi neither
- Requirements
 - Long Range (LPWAN)
 - Low Power (LPWAN)
 - we operate on battery
 - Cheap Hardware
 - IoT comes in quantity
- As a consequence -> Low data rate

LPWAN - How?

- Compromises
 - Sub 1 GHz frequency
 - Sometimes unlicensed frequencies
 - Small bandwidth
 - Rate limitation
 - Conservative duty-cycling and listening
 - Robust modulation technique

LoRa (Long Range)

LoRa - Architecture

- 3 components
 - End-devices, gateways and the network server

- Gateways act as link layer relay (protocol converter)
- star topology of end-devices
 - No mesh only device to gateway communication

Figure 2: LoRa stars-of-stars topology from [12]

LoRa - Layers

- LoRa refers to the PHY layer
 - Frequency & Modulation
 - Closed and proprietary
- LoRaWAN refers to the MAC layer
 - communication between gateways and nodes

LoRa - PHY

- Operates at un-licensed (ISM) bands
 - 433, 868, 928 MHz -> differ for each region
- Duty Cycling
 - Limitation of 1% per sub band in Europe
 - Device has to wait 100-times the duration of the

last frame

- Data rate from 250 bps to 5.5 kbps
- Distance
 - Advertised with up to 15km
 - World Record of 354km to a balloon

LoRa - PHY

- Chirp Spread Spectrum (CSS)
 - Linear variation of frequency over time
 - Up-Chirp &
 - Down-Chirp

- Resilient and robust
 - Frequency offsets are equal to timing offsets
 - -> Cheap oscillator

Figure 4: Chirp Waterfall Diagram from [8]

LoRa - LoRaWAN

Layer 2 and 3 (data and network)

- Support for up to ~1,000 devices per gateway
 - Using the maximum duty cycle of 1%
- Bidirectional
 - Not always the case in LPWANs
- MAC is similar to pure Aloha
 - Degrades quickly with increased load on the link
- 3 Classes
 - Adjusting latency and power consumption

LoRa - Classes

 A: Two downlink receive windows after transmission

- B: scheduled receive slots
 - need for synchronized beacons

 C: Continuous receive window

LoRa - Problems

- PHY layer is closed source and proprietary
- LoRa was acquired by SemTech
 - Currently the only supplier for LoRa radio chips

- Usage of ISM bands
 - Protocol is not resilient to collisions
 - Competitors can use the same band

LoRa in the Real World

LoRa - Adaption

 LoRa Alliance has more than 500 member companies

Figure 6: LoRa Adoption from [10]

LoRa – Example Deployment

Internet of Cows

Geofencing

 Analyze Cow behavior via various sensors

Figure 7: Cow with a LoRa enabled Sensor From [13]

When to use a LORA?

USE

- Sensor Data in defined intervals
- Harsh power constraints
 - Battery powered devices
- Low cost devices

DON'T

- Continuous data transmission
- Need of high data rate
- QoS guarantee
- Power connected devices

Other LPWAN Technologies

LoRa is not alone

LPWAN Competitors

- Examples
 - NB-IoT
 - LTE-M
 - Sigfox
 - 5G
- Each protocol has its advantages and disadvantages
- Each application/ device has its own specific requirements

Conclusion

do we really need another wireless networking protocol?

Conclusion

- Developing an IoT device
 - Consider device application and therefore its requirements
 - Then chose a wireless network
 - you can chose multiple
- LoRa is a LPWAN
 - PHY layer -> robust and long range
 - Low power consumption
 - Fast growing adaption

Figure 9: LoRa Gateways in Aachen [14]

- Fragmentation is here to stay
 - Pros and cons of each technology

References

- [1] R. S. Sinha, Y. Wei, and S.-H. Hwang, "A survey on lpwa technology: Lora and nb-iot," *ICT Express*, vol. 3, no. 1, pp. 14 21, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2405959517300061
- [2] K.E.Nolan, W.Guibene, and M.Y.Kelly, "An evaluation of low power wide area network technologies for the internet of things," in 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Sept 2016, pp. 439–444.
- [3] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, "A study of lora: Long range & low power networks for the internet of things," Sensors, vol. 16, no. 9, p. 1466, 2016.
- [4] K. Mikhaylov, . J. Petaejaejaervi, and T. Haenninen, "Analysis of capacity and scalability of the lora low power wide area network technology," in European Wireless 2016; 22th European Wireless Conference, May 2016, pp. 1–6.
- [5] P. Neumann, J. Montavont and T. Noël, "Indoor deployment of low-power wide area networks (LPWAN): A LoRaWAN case study," 2016 IEEE 12th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), New York, NY, 2016, pp. 1-8.
- [6] **LPWAN Benefits**, https://www.leverege.com/blogpost/lpwan-benefits-vs-iot-connectivity-options
- [7] **LORAWAN Duty Cycle**, https://www.thethingsnetwork.org/docs/lorawan/duty-cycle.html
- [8] What is Lora?, https://www.link-labs.com/blog/what-is-lora
- [9] Matt Knight "Decoding the LoRa PHY", Chaos Communication Congress 33C3, 2016
- [10] Lora Alliance, "LoRa Adoption", https://lora-alliance.org
- [11] Kais Mekki, Eddy Bajic, Frederic Chaxel, Fernand Meyer, "A comparative study of LPWAN technologies for large-scale IoT deployment," ICT Express, 2018
- [12] Sanchez-Iborra, Ramon, et al. "Performance Evaluation of LoRa Considering Scenario Conditions." Sensors 18.3 (2018): 772.
- [13] Cattle Traxx IoT Sensors, http://www.braemacca.com/news/item/iot-and-lorawan-modernize-livestock-monitoring
- [14] Network, T. T. The Things Network, https://www.thethingsnetwork.org/community/aachen